
Real Time Tracking

We used the approach mentioned in the shared research papers for object tracking. The
algorithm was implemented using basic matrix algebra and numpy.

Dataset - We are using a traffic IP camera video from YouTube of a length of 30 seconds. This
is the Link to the dataset.

Methodology
1) The input video was processed using opencv2 to extract frames out of it.
2) For each image location, we stored pixel values across all the frames in an array and

passed it as input to the Gaussian_Mixture function to represent the pixel values as a
mixture of two Gaussians.

3) One of the Gaussians will represent the background and the other will represent the
foreground of a particular pixel across all the frames.

4) As the background remains the same for most of the frames, the mean of the gaussian
that has more weight and less standard deviation is used for constructing the
background.

5) To track the object, we subtract this background from each frame.

Algorithm (Gaussian Mixture Model)
1) For this assignment, we are representing the pixel values across all the frames as a
mixture of two Gaussians.
2) We start by initializing the values of mean and variance for both the gaussians.
3) We calculate the likelihood of each observation xᵢ using the initial values of mean and

variance.
4) For both the gaussian clusters, we calculate our data's probability density (pdf) using the

initial mean and variance values.

5) Then, we can calculate the likelihood of a given example xᵢ to belong to the kᵗʰ cluster.

6) Using Bayes Theorem, we get the posterior probability of the kth Gaussian to explain the
data. That is the likelihood that the observation xᵢ was generated by kᵗʰ Gaussian. We

https://www.youtube.com/watch?v=Gr0HpDM8Ki8&list=PLcQZGj9lFR7y5WikozDSrdk6UCtAnM9mB&index=5

have initialized the weights to 0.5 for both the gaussians, since we don’t have any
information to favor one gaussian over the other.

7) In the next step, we re-estimate our learning parameters as follows.

8) We will repeat the same process until the values of mean, variance and weights of
boththe Gaussians converge.

Limitations

● The implementation is not an optimized one in terms of time-complexity and is only
intended to deliver the concept.

● The approach can fail when the foreground objects are present in the video for a larger
duration of time. However, in such scenarios, taking a video of a longer duration as input
is expected to yield better results.

Results
The following background image is obtained on the successful execution of the algorithm
described above. Note that the image is devoid of any moving vehicles.

The final video that detects the moving object can be found here.It is also attached in the zip
file.

Some of the video frames and their detected foregrounds are shown below

Video Frame Detected Foreground

https://drive.google.com/file/d/1oRwjYDSDI4IZANMvPyZ_jmS_rB6wlw_z/view?usp=sharing

Accuracy
The output frames computed by the algorithm were compared with the output frames obtained
after using the in-built BackgroundSubtractorMOG2 function in OpenCV2. The metric used for
comparison was MSE. The frames from my algorithm were converted to black and white only for
fair comparison since the in-build function gives output frames in only black and white. The maximum
RMSE obtained is 87.11 and minimum RMSE obtained is 1.58

Link to the spreadsheet containing the MSE values

Comparison between the two algorithms

● The gaussian mixture algorithm implemented by me had a sharper foreground as
compared to the BackgroundSubtractorMOG2 function output.

● However, the in-built function was also able to detect shadows which was not detected by my
algorithm.

Output frame using my algorithm Output frame using in-built
function

https://docs.google.com/spreadsheets/d/1holfPwM2KV_PWSa1_fkjfoVsrvNB5sZBFW8jT6ukV9E/edit?usp=sharing

References:
● https://towardsdatascience.com/how-to-code-gaussian-mixture-models-from-scratch-in-p

ython-9e7975df5252
● https://ieeexplore.ieee.org/document/784637
● https://hal.archives-ouvertes.fr/hal-00338206/en/
● https://doi.org/10.1016/j.cosrev.2019.100204
● https://medium.com/@prantiksen4/background-extraction-from-videos-using-gaussian-m

ixture-models-6e11d743f932

https://towardsdatascience.com/how-to-code-gaussian-mixture-models-from-scratch-in-python-9e7975df5252
https://towardsdatascience.com/how-to-code-gaussian-mixture-models-from-scratch-in-python-9e7975df5252
https://towardsdatascience.com/how-to-code-gaussian-mixture-models-from-scratch-in-python-9e7975df5252
https://ieeexplore.ieee.org/document/784637
https://hal.archives-ouvertes.fr/hal-00338206/en/
https://doi.org/10.1016/j.cosrev.2019.100204
https://medium.com/@prantiksen4/background-extraction-from-videos-using-gaussian-mixture-models-6e11d743f932
https://medium.com/@prantiksen4/background-extraction-from-videos-using-gaussian-mixture-models-6e11d743f932
https://medium.com/@prantiksen4/background-extraction-from-videos-using-gaussian-mixture-models-6e11d743f932

