
Real Time Tracking 

We used the approach mentioned in the shared research papers for object tracking. The 
algorithm was implemented using basic matrix algebra and numpy. 

Dataset - We are using a traffic IP camera video from YouTube of a length of 30 seconds. This 
is the Link to the dataset. 

Methodology 
1) The input video was processed using opencv2 to extract frames out of it. 
2) For each image location, we stored pixel values across all the frames in an array and 

passed it as input to the Gaussian_Mixture function to represent the pixel values as a 
mixture of two Gaussians. 

3) One of the Gaussians will represent the background and the other will represent the 
foreground of a particular pixel across all the frames. 

4) As the background remains the same for most of the frames, the mean of the gaussian 
that has more weight and less standard deviation is used for constructing the 
background. 

5) To track the object, we subtract this background from each frame. 

Algorithm (Gaussian Mixture Model) 
1) For this assignment, we are representing the pixel values across all the frames as a 
mixture of two Gaussians. 
2) We start by initializing the values of mean and variance for both the gaussians. 
3) We calculate the likelihood of each observation xᵢ using the initial values of mean and 

variance. 
4) For both the gaussian clusters, we calculate our data's probability density (pdf) using the 

initial mean and variance values. 

 
5) Then, we can calculate the likelihood of a given example xᵢ to belong to the kᵗʰ cluster. 

 

6) Using Bayes Theorem, we get the posterior probability of the kth Gaussian to explain the 
data. That is the likelihood that the observation xᵢ was generated by kᵗʰ Gaussian. We 

https://www.youtube.com/watch?v=Gr0HpDM8Ki8&list=PLcQZGj9lFR7y5WikozDSrdk6UCtAnM9mB&index=5


have initialized the weights to 0.5 for both the gaussians, since we don’t have any 
information to favor one gaussian over the other. 

7) In the next step, we re-estimate our learning parameters as follows. 

 

8) We will repeat the same process until the values of mean, variance and weights of 
boththe Gaussians converge. 

Limitations 

● The implementation is not an optimized one in terms of time-complexity and is only 
intended to deliver the concept. 

● The approach can fail when the foreground objects are present in the video for a larger 
duration of time. However, in such scenarios, taking a video of a longer duration as input 
is expected to yield better results. 

Results 
The following background image is obtained on the successful execution of the algorithm 
described above. Note that the image is devoid of any moving vehicles. 

 
The final video that detects the moving object can be found here.It is also attached in the zip 
file. 

Some of the video frames and their detected foregrounds are shown below 

Video Frame Detected Foreground 

https://drive.google.com/file/d/1oRwjYDSDI4IZANMvPyZ_jmS_rB6wlw_z/view?usp=sharing


  

  

  

  

  

Accuracy 
The output frames computed by the algorithm were compared with the output frames obtained 
after using the in-built BackgroundSubtractorMOG2 function in OpenCV2. The metric used for 
comparison was MSE. The frames from my algorithm were converted to black and white only for 
fair comparison since the in-build function gives output frames in only black and white. The maximum 
RMSE obtained is 87.11 and minimum RMSE obtained is 1.58 



 
Link to the spreadsheet containing the MSE values 

Comparison between the two algorithms 

● The gaussian mixture algorithm implemented by me had a sharper foreground as 
compared to the BackgroundSubtractorMOG2 function output. 

● However, the in-built function was also able to detect shadows which was not detected by my 
algorithm. 

Output frame using my algorithm Output frame using in-built 
function 

  

  

https://docs.google.com/spreadsheets/d/1holfPwM2KV_PWSa1_fkjfoVsrvNB5sZBFW8jT6ukV9E/edit?usp=sharing
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