
Reference
The data set has been taken from Graham, Daniel B. and Allinson, Nigel (1998) Face database
Datset

The following Github link has been used for reference Repository

Read Me
There are two zip files that need to be added before running below snippets. Zip files need to be
added in the content directory.

Assumptions
There are total 20 different faces. Each face has different 15-25 different angle,lighting images.

Some of these images has been removed from the dataset and used as test images. So there are
total 20 test images and 546 dataset images.

To find the accuracy, each test image is compared with 546 images of the dataset and error is
found. 4000 has been kept has threshold for error. Thats is if error is less than 4000 than image
is detected otherwise not. All 20 faces are labbeled as 1a to 1t.

Accuracy for a face is defined as (TP+TN)/(TP+TN+FP+FN)

Run this file to unzip the uploaded dataset
import zipfile
with zipfile.ZipFile("test.zip","r") as zip_ref:
 zip_ref.extractall()
with zipfile.ZipFile("cropped.zip","r") as zip_ref:
 zip_ref.extractall()

importiting utilities
import os, glob
from sklearn import preprocessing
import cv2
import numpy as np
import matplotlib.pyplot as plt
import math

setting path to the dataset
dataset_path = os.getcwd() + '/cropped/'
test_path = os.getcwd() + '/test/'

https://github.com/Ugenteraan/Face-Recognition-Eigenface-Scratch
http://eprints.lincoln.ac.uk/id/eprint/16081/

#function to plot the images
def plot_portraits(images, titles, h, w, n_row, n_col):
 plt.figure(figsize=(2.2 * n_col, 2.2 * n_row))
 plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90,
hspace=.20)
 for i in range(n_row * n_col):
 plt.subplot(n_row, n_col, i + 1)
 plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
 plt.title(titles[i])
 plt.xticks(())
 plt.yticks(())

#to get the total number of images
total_images = 0
shape = None
for images in glob.glob(dataset_path + '/**', recursive=True):
 if images[-3:] == 'pgm':
 total_images += 1

print(total_images)

546

shape = (112,92)
#size of the images
all_images = np.zeros((total_images, shape[0],
shape[1]) ,dtype='float64') #initialize the numpy array
names = list()
i = 0
for folder in glob.glob(dataset_path + '/*'+'/face'):
#iterate through all the class
 for image in glob.glob(folder + '/*'):
#iterate through each folder (class)
 names.append(folder[-7:-5])
#list for the different faces
 read_image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
#read the image in grayscale
 resized_image = cv2.resize(read_image, (shape[1], shape[0]))
#cv2.resize resizes an image into (# column x # height)
 all_images[i] = np.array(resized_image)
 i += 1
plot_portraits(all_images, names, 112,92, 21, 26)
#plotting all 546 images with names

546

A = np.resize(all_images, (total_images, shape[0]*shape[1]))
#convert the images into vectors. Each row has an image vector. i.e.
all_images x image_vector matrix
mean_vector = np.sum(A, axis=0, dtype='float64')/total_images

#calculate the mean vector
mean_matrix = np.tile(mean_vector, (total_images, 1))
#make a 546 copy of the same vector. 574 x image_vector_size matrix.
A_tilde = A - mean_matrix
#mean-subtracted image vectors
plt.imshow(np.resize(mean_vector, (shape[0],shape[1])), cmap='gray')
#show the mean image vector
plt.title('Mean Image')
plt.show()

plot_portraits(A_tilde, names, 112,92, 21, 26)
matrix A_tilde that contains vectors of each mean subtracted img

L = (A_tilde.dot(A_tilde.T))/total_images
#since each row is an image vector (unlike in the notes, L = (A_tilde)
(A_tilde.T) instead of L = (A_tilde.T)(A_tilde)
print("L shape : ", L.shape)
eigenvalues, eigenvectors = np.linalg.eig(L)
#find the eigenvalues and the eigenvectors of L
idx = eigenvalues.argsort()[::-1]
#get the indices of the eigenvalues by its value. Descending order.
eigenvalues = eigenvalues[idx]
eigenvectors = eigenvectors[:, idx]
#sorted eigenvalues and eigenvectors in descending order

L shape : (546, 546)

eigenvectors_C = A_tilde.T @ eigenvectors
#linear combination of each column of A_tilde
eigenvectors_C.shape
#each column is an eigenvector of C where C = (A_tilde.T)(A_tilde).
NOTE : in the notes, C = (A_tilde)(A_tilde.T)

(10304, 546)

#normalize the eigenvectors
eigenfaces = preprocessing.normalize(eigenvectors_C.T)
#normalize only accepts matrix with n_samples, n_feature. Hence the
transpose.
eigenfaces.shape

(546, 10304)

#to visualize some of the eigenfaces
eigenface_labels = [x for x in range(eigenfaces.shape[0])]
#list containing values from 1 to number of eigenfaces
plot_portraits(eigenfaces, eigenface_labels , 112,92, 21, 26)

test_images = np.zeros((20, shape[0], shape[1]) ,dtype='float64')
#initialize the numpy array
test_images_mean_subtracted = np.zeros((20, 10304,) ,dtype='float64')

test_names = list()
cnt = 0
for folder in glob.glob(test_path + '/*'):
 test_names.append(folder[-6:-4])

 test_img = cv2.imread(folder, cv2.IMREAD_GRAYSCALE)
#testing image
 test_img = cv2.resize(test_img, (shape[1],shape[0]))
#resize the testing image. cv2 resize by width and height.
 mean_subracted_testimg = np.reshape(test_img,
(test_img.shape[0]*test_img.shape[1])) - mean_vector #subtract the
mean
 plt.imshow(np.reshape(mean_subracted_testimg, (112,92)),
cmap='gray')
 plt.title("Mean Subtracted Test Image "+test_names[-1])
 plt.show()
 test_images[cnt] = np.array(test_img)
 test_images_mean_subtracted[cnt] = np.array(mean_subracted_testimg)
 cnt = cnt+1

q = 400
omega = list()
for i in range(20):
#number of chosen eigenfaces
 omega.append(eigenfaces[:q].dot(test_images_mean_subtracted[i]))
#the vector that represents the image with respect to the eigenfaces.
 print(omega[i].shape)

(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)
(400,)

#To visualize the reconstruction
for i in range(20):
 reconstructed = eigenfaces[:q].T.dot(omega[i])
#image reconstructed using q eigenfaces.
 plt.imshow(np.reshape(reconstructed, (shape[0],shape[1])),
cmap='gray')
 plt.title("Reconstructed image - "+str(q)+" eigenfaces")
 plt.show()

alpha_1 = 4000
#chosen threshold for face detection

for i in range(20):
 projected_new_img_vector = eigenfaces[:q].T @ omega[i]
#n^2 vector of the new face image represented as the linear
combination of the chosen eigenfaces
 diff = test_images_mean_subtracted[i] - projected_new_img_vector
 beta = math.sqrt(diff.dot(diff))
#distance between the original face image vector and the projected
vector.
 if beta < alpha_1:
 print("Face detected in the image " + test_names[i] +"!", beta)
 else:
 print("No face detected in the image! " + test_names[i], beta)

Face detected in the image 1i! 844.7336303642053
Face detected in the image 1f! 990.5052439879049
Face detected in the image 1p! 1177.8956297817058
Face detected in the image 1c! 1414.6047836558896
Face detected in the image 1g! 883.2204603645707
Face detected in the image 1b! 1689.8541913364788
Face detected in the image 1o! 1051.331230962214
Face detected in the image 1h! 1313.9322534250543
Face detected in the image 1d! 1654.624886114489
Face detected in the image 1e! 1255.6080844317605
Face detected in the image 1t! 193.0975625696388
Face detected in the image 1n! 755.5506160900487

Face detected in the image 1l! 1687.5603010120317
Face detected in the image 1j! 1471.5700242594842
Face detected in the image 1a! 1582.4376215666848
Face detected in the image 1q! 1514.3391435776728
Face detected in the image 1s! 1097.0827482663556
Face detected in the image 1r! 932.6582846947522
Face detected in the image 1m! 1255.3882639297815
Face detected in the image 1k! 1535.3259757252379

alpha_2 = 4000
#chosen threshold for face recognition
count = 0
tp_tn = 0
#to keep track of the smallest value
index = None
for x in range (20):
 face_cnt = 0
 tp=0
 tn=0 #to
keep track of the class that produces the smallest value
 for k in range(total_images):
 omega_k = eigenfaces[:q].dot(A_tilde[k])
#calculate the vectors of the images in the dataset and represent
 diff = omega[x] - omega_k
 epsilon_k = math.sqrt(diff.dot(diff))
 if(names[k] == test_names[x]):
 face_cnt = face_cnt + 1
 if alpha_2 >= epsilon_k:
 tp = tp + 1
 else:
 if alpha_2 < epsilon_k:
 tn = tn + 1
 print("Detected tp", tp,"& tn",tn,"for ",face_cnt, " images of face
", test_names[x])
 tp_tn = tp_tn + tp + tn

Detected tp 12 & tn 520 for 19 images of face 1i
Detected tp 3 & tn 519 for 22 images of face 1f
Detected tp 6 & tn 513 for 25 images of face 1p
Detected tp 1 & tn 521 for 25 images of face 1c
Detected tp 6 & tn 513 for 18 images of face 1g
Detected tp 1 & tn 522 for 24 images of face 1b
Detected tp 4 & tn 524 for 18 images of face 1o
Detected tp 7 & tn 499 for 21 images of face 1h
Detected tp 2 & tn 523 for 23 images of face 1d
Detected tp 7 & tn 506 for 25 images of face 1e
Detected tp 8 & tn 512 for 34 images of face 1t
Detected tp 7 & tn 508 for 29 images of face 1n
Detected tp 1 & tn 513 for 33 images of face 1l
Detected tp 8 & tn 513 for 31 images of face 1j

Detected tp 0 & tn 509 for 37 images of face 1a
Detected tp 6 & tn 517 for 25 images of face 1q
Detected tp 12 & tn 493 for 47 images of face 1s
Detected tp 15 & tn 504 for 32 images of face 1r
Detected tp 8 & tn 512 for 25 images of face 1m
Detected tp 3 & tn 513 for 33 images of face 1k

accuracy = tp_tn*100/(20*546)
print("Accuracy of face detection is", accuracy)

Accuracy of face detection is 94.97252747252747

	Reference
	Read Me
	Assumptions

