
MA201 Project Report

Edge Detection In Images Using
Fourier Transform

Anuj Buch Haikoo Khandor Ksheer Agrawal Madhav Kanda Sanskar Sharma

20110019 20110071 20110098 20110104 20110185

Group “4ier”| 14 November, 2021

1

MA201

Problem Statement

Edge detection is a technique of image processing used to identify points in a digital image with
discontinuities, or say, sharp changes in the image brightness. These particular points where the
image brightness ranges sharply are called the edges (or boundaries) of the image. It is one of the
elementary steps in image processing, pattern recognition in images and computer vision.

The process of edge detection significantly decreases the amount of data and filters out
unnecessary information, while conserving the important structural characteristics of an image.
In order to achieve this, a fourier transform is used here. Though the latter is used on signals, it
has the same effect on images. It converts the input image from spatial (space) domain to the
frequency domain. Hence after applying the fourier transform, we get a series of low and high
frequencies after plotting the image on a graph. Detecting edges is possible because the edges are
made up of high frequencies. On taking the fourier transform of an image and applying a fourier
inverse transform, we see that now the image consists only of the object boundaries. Also, here
we will use Fast Fourier Transform i.e. FFT. As a traditional approach to this problem, we use
DFT (Discrete Fourier Transform) whose time complexity is O(n^2). FFT is better than DFT as it
has a time complexity of O(Nlog(N)). Our approach to this problem statement is to use python
and employ numpy, matplotlib and other libraries in order to implement a FFT function. We also
employ filters here. Filters applied on signals help in allowing specific bands of frequencies to
pass through which can be later utilized as per need. Diving deep into the wide applications of
the resulting image, we shall detect the edges using a high pass band filter which allows only
high frequencies to pass through it. This helps us to detect the edges in the transformed image.

Edge detection is a comprehensive application that finds use in almost everything around us. The
documents that one scans using scanner apps utilize this concept. From capturing and verifying
fingerprints on digital screens to vision used in robots and the field of medicine, edge detection
finds a wide range of use. This project aims to develop an FFT function and high pass filter to
implement images and show the final results. The project work may be helpful in fingerprint
detection and number plate detection and finds huge applications in fields requiring outline
detection like architecture, surgery, etc.

Page 2

MA201

Contents
1 Physical Model 5

2 Assumptions 6

3 Governing Equations 7

3.1 Fourier Series 7

3.2 Fourier Integral 7

3.3 Fourier Transform 8

3.4 Convolution 8

3.5 Discrete Fourier Transform 9

3.6 Fast Fourier Transform 9

3.7 Inverse Fourier Transform 9

4 Parameters 10

4.1 DFT and FFT Parameters 10

4.2 IDFT Parameters 10

4.3 Other Parameters 10

5 Solution Methodology 11

6 Important Concepts 12

6.1 DFT 12

6.2 FFT 14

6.3 IDFT 15

Page 3

MA201
7 Algorithm Implemented 18

8 Results and Discussion 23

9 Future Scopes 26

10 Code for Edge Detection 27

11 References 29

12 Contribution 30

Page 4

MA201

1. Physical Model

First, let us look at what transform means. Transform performs a transformation in the form of an
operation such that the user can use it to solve several kinds of equations and tackle various types
of functions. These can be of several kinds, depending on their application. Laplace transform,
Fourier transform, etc., are some examples. Several of these have become of utmost importance
due to their extensive usage in solving real-world scenarios. One such is the Fourier transform. It
can be used to solve differential equations, design and analyze electrical circuits, signal analysis,
signal processes, filtering, etc.

Fourier transform is a mathematical transform used to dismantle composite functions in space or
time domain to functions depending on frequency, be it spatial or temporal. Signals, generally,
build up several disturbances and changes as they travel. This causes them to take such complex
waveforms, which are extremely difficult to analyze. Figuring out the constituents of the original
wave is a next to impossible task even after noise reduction. The Fourier transform plays a key
role here. In a layman's language, once a signal passes through the Fourier transformer, it
separates it into its constituent frequency components. Hence, one can quickly identify the
constituent frequencies of any signal by such a method. It converts signals from the time domain
to the frequency domain.

Analogous to signals, Fourier transform does the same thing to an image. It is better to compare
and evaluate frequencies rather than the entire image. All said and done, every image has a
unique Fourier transform, just as humans have their unique fingerprints.

Page 5

MA201

2. Assumptions

1. For a digital image, we consider x,y (spatial coordinates) and the intensity values of f as
finite discrete quantities.

2. We may see some artifacts - ripple-like structures called ringing effects if we use a
rectangular window for masking. Rectangular masks are converted into sinc shape that
causes this problem.

3. We visually analyze a Fourier transform by computing a Fourier spectrum (the magnitude
of F(u,v)) and display it as an image.

4. Size of the input array is the same as the output array..

5. For a non-periodic function f(x) representation by Fourier integral, we assume L, as
arbitrarily large, but finite.

6. Since the computer has limited space to compute the Fourier integral, we replace the
infinity by number a.

7. We assume N to be sufficiently large to avoid aliasing.

Page 6

MA201

3. Governing Equations
This section discusses the various concepts and methods used to perform this process, which acts
as some pre-requisite for the same.

3.1 Fourier Series
The Fourier series represents a periodic function, f(x), in terms of its sine and cosine constituents
by an infinite series.

(1)

(2)

3.2 Fourier Integral

Fourier integral is a particular form of Fourier series for piecewise continuous functions. It
evaluates integral as against series in the earlier case. The function, f(x), required the input to
have a right-hand as well as a left-hand derivative at each point. Moreover, for those points
where it does not, it is the average of the two limits at that point. This form of solution further
enhances the ease of the solution.

Page 7

MA201

3.3 Fourier Transform
Integral transform produces new functions based on different variables. These act as the most

accessible tool to evaluate the solutions to a variety of problems. This is easy to solve in the

complex form, but can also be solved using sine and cosine integrals. Fourier transform of a

function f(x) is given by and is evaluated as follows:

3.4 Convolution
The convolution f * g of functions f and g is defined by

Suppose that f(x) and g(x) are piecewise continuous, bounded, and absolutely integrable on the
x-axis. Then

(5)

Page 8

MA201

3.5 Discrete Fourier Transform
The general idea is that the image (f(x,y) of size M x N) will be represented in the frequency
domain (F(u,v)). The equation for the two-dimensional discrete Fourier transform (DFT) is:

(6)

The concept behind the Fourier transform is that any waveform can be constructed using a sum
of sine and cosine waves of different frequencies. The exponential in the above formula can be
expanded into sines and cosines with the variables u and v determining these frequencies.

3.6 Fast Fourier Transform

A Fast fourier transform is preferred over the Discrete Fourier Transform method because
it’s computational method for the DFT needs only O(Nlog2N) operations instead of O(N
2).It makes the DFT a practical tool for large N.

3.7 Inverse Fourier Transform
The inverse of the above Discrete Fourier transform is given by the following equation:

(7)

Thus, if we have , we can obtain the corresponding image using the inverse,𝐹(𝑢, 𝑣) (𝑓(𝑥, 𝑦))
discrete Fourier transform.

Page 9

MA201

4. Parameters

4.1 DFT and FFT Parameters
- 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑠𝑖𝑔𝑛𝑎𝑙
- 𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
- 𝑘 = 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛
- 𝑥

𝑛
= 𝑡ℎ𝑒 𝑠𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑛

- 𝑋
𝑘

= 𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

- 𝑊
𝑁
𝑢𝑥 = 𝐴 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑊 𝑤ℎ𝑜𝑠𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠

𝑒
−𝑗 2π

𝑁 𝑥𝑢
𝑖. 𝑒. 𝑊

𝑁
𝑢𝑥. 𝐼𝑡 𝑖𝑠 𝑗𝑢𝑠𝑡 𝑎 𝑤𝑎𝑦 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡𝑜 𝑤𝑟𝑖𝑡𝑒

𝑊
𝑁
𝑢𝑥 = 𝑒

−𝑗 2π
𝑁 𝑥𝑢

𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑟𝑦 𝑛𝑜𝑤 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛.

- 𝑓(𝑥) = 𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑.
- 𝐹(𝑥) = 𝑇ℎ𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑥).

4.2 IDFT Parameters
- 𝑥 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑠𝑖𝑔𝑛𝑎𝑙
- 𝑋

𝑘
= 𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐷𝐹𝑇

- 𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
- 𝑘 = 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛

4.3 Other Parameters
Other parameters used in edge detection of the image are given below.

1. A1 = 20

2. A2 = 2000

3. mask = 12, where mask represents the unit length of transformed image masked with 0.

4. img is read as a numpy array of intensity of input image in grayscale.

Page 10

MA201

5. Solution Methodology

To produce a line “drawing” of a scene from an image of that scene, we use the following
methodology -

We define the image as a 2-d function f(x,y) where x and y are spatial coordinates and the
amplitude of f at any pair of coordinates (x,y) and the intensity values of the image at that point.
For a sinusoidal signal, if the amplitude varies so fast in a short time, you can say it is a high
frequency signal. Edges are significant local changes of intensity in an image. More intuitively, at
edges the amplitude varies drastically in images. So we can say, edges are high frequency content
in images.

Once we perform the fourier transform of an image, we would see a plot of high and low
frequencies. Interestingly, all the low frequency components are saturated at the center, and the
high frequency components are scattered around. We then create a high pass filter which would
typically be a mask array of the same size as the image with a miniature square of zeroes at the
center and rest all ones. Now when the mask is applied to the original image, the resultant would
only have high frequencies. This becomes quite useful as low frequencies correspond to
non-edges in the spatial domain. The result shows High Pass Filtering is an edge detection
operation.

Page 11

MA201

6. Important Concepts:

6.1 DFT

The Discrete Fourier Transform(DFT for short) is a transform that can be used to transform a
finite-length, discrete signals of equally spaced signals into a complex-valued function of
frequency. It tells us information about the frequency of different sine waves that are summed up
to get that particular signal.

We use the Euler formula to relate the exponential function with the trigonometric function.

Euler Formula:

Formula for Discrete Fourier Transform:

Parameters:

- 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑠𝑖𝑔𝑛𝑎𝑙
- 𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
- 𝑘 = 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛
- 𝑥

𝑛
= 𝑡ℎ𝑒 𝑠𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑛

- 𝑋
𝑘

= 𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

Page 12

MA201

Problem statement: To make a function that calculates the DFT of a signal given as a 1-D input
to the function. This function shall return the computer DFT values back as the output.

Signal constituting of 3 different waveforms After applying DFT

Limitations of DFT: The main issue with the above DFT implementation is that it is not
efficient when operated on dense signals with a large number of data points. The algorithm used
to implement DFT is of order N². To speed up computation, a faster version of DFT, “Fast
Fourier Transform” is used.

Checking the time taken by FFT and DFT:
starttime_fft=time.time()
F_fft=FFT(np.array(f))
endtime_fft=time.time()
elapsed_fft=endtime_fft-starttime_fft
print("Time taken to run the FFT Algorithm: "+str(elapsed_fft)+" sec.")

starttime_dft=time.time()
F_dft=DFT1D(np.array(f))
endtime_dft=time.time()
elapsed_dft=endtime_dft-starttime_dft
print("Time taken to run the DFT Algorithm: "+str(elapsed_dft)+" sec.")

Result:
Time taken to run the FFT Algorithm: 0.000568389892578125 sec.
Time taken to run the DFT Algorithm: 0.0013747215270996094 sec.

Page 13

MA201

6.2 FFT

Motivation: DFT (Discrete Fourier Transform) is a method through which a finite sequence of
equally spaced samples is converted into a complex valued function of frequency. However, in
case of large data samples, it is not an efficient algorithm in terms of time complexity. Since it is

of O (), we cannot use it for practical purposes. Hence there is a need to define another𝑛2

function. Here comes Fast Fourier Transform. It effectively solves the problem by using
recursion and does it in O(Nlog(N)). (N Is the data size)

About FFT: Fast Fourier Theorem uses DFT and recursively iterates through two halves of the
array which it takes as an input. The array is split into two one consisting of even indices and the
other of odd indices. This process keeps on repeating till we reach the base case. Here, it simply
returns the value and keeps on returning till we get the whole array.

We also use Euler’s famous complex formula

𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)

Formula used in computing DFT:

Formula used in computing FFT:

The first term is the DFT of the N/2 elements corresponding to the even indices, the second term
is the DFT of the N/2 elements related to the odd indices.
This way, we can split the DFT of N elements, in a recursive way, into two N/2 DFTs, and later
combine the results:

Page 14

MA201
Parameters:

- 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑠𝑖𝑔𝑛𝑎𝑙
- 𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
- 𝑘 = 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛
- 𝑥

𝑛
= 𝑡ℎ𝑒 𝑠𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑛

- 𝑋
𝑘

= 𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

- 𝑊
𝑁
𝑢𝑥 = 𝐴 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑊 𝑤ℎ𝑜𝑠𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠

𝑒
−𝑗 2π

𝑁 𝑥𝑢
𝑖. 𝑒. 𝑊

𝑁
𝑢𝑥. 𝐼𝑡 𝑖𝑠 𝑗𝑢𝑠𝑡 𝑎 𝑤𝑎𝑦 𝑜𝑓 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡𝑜 𝑤𝑟𝑖𝑡𝑒

𝑊
𝑁
𝑢𝑥 = 𝑒

−𝑗 2π
𝑁 𝑥𝑢

𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑟𝑦 𝑛𝑜𝑤 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛.

- 𝑓(𝑥) = 𝑇ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑.
- 𝐹(𝑥) = 𝑇ℎ𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑥).

6.3 Inverse Discrete Fourier transform (IDFT)
Given a discrete Fourier transform of a discrete signal. The inverse Discrete Fourier𝑋: 𝑍 → 𝐶
Transform of is defined as the signal with components x(n) given by the𝑋 𝑋 : [0, 𝑁 − 1] → 𝐶
expression

Theorem
Given a discrete signal x:[0, N − 1] → C, let X = F(x): Z → C stand in for the DFT of x and 𝑥

= (X) : [0, N − 1] → C be the Inverse Discrete Fourier transform of X. We then have that x ≡𝐹−1

, or, equivalently,𝑥

((x)) = x𝐹−1 𝐹

Page 15

MA201
Proof
Given a discrete signal , let be the DFT of x and𝑥: [0, 𝑁 − 1]→𝐶 𝑋 = 𝐹(𝑥): 𝑍→𝐶

be the Inverse Discrete Fourier transform of X. From the𝑥 = 𝐹−1 (𝑋) : [0, 𝑁 − 1] → 𝐶
definition of the Inverse Discrete Fourier transform, we have

Substituting the definition of the DFT for X(k) in the above equation

We may exchange the order of the summation, so that we first sum over , and then pull out𝑘
since it is independent of , i.e.𝑥(𝑛) 𝑘

(A)--------------

Due to the orthonormality we obtain:

Therefore by the above result (A) reduces to:

With since the only nonnegative term in the sum is when

Page 16

MA201

Code:

def idft(y_real, y_imaginary):
N, x = len(y_real), []
for n in range(N):

real = 0
for k in range(N):

theta = k * (2 * math.pi) * (float(n) / N)
real += (y_real[k] * math.cos(theta)) - (y_imaginary[k] *

math.sin(theta))
x.append(real)

return x

Parameters:
1. y_real = Array containing real part of the function on which we have to apply Inverse

Discrete Fourier Transform
2. y_imaginary = Array containing imaginary part of the function on which we have to

apply Inverse Discrete Fourier Transform
3. N = length of array of y_real
4. x = Array containing real part of IDFT implemented function
5. theta = angle of exponential function in the Inverse Discrete Fourier Transform

Explanation of Code
● Above we have defined a function which takes in the input y_real and y_imaginary.
● We define N as the length of the y_real array and x as an empty array.
● We initiate a for loop in which we initialize a variable named real, which we initialize as

0 and run it N number of times so as to calculate for each of the functions in y_real.
● We then initialize a for loop which runs for N times, for calculating the value of theta

and real part of the inverse discrete fourier transform.
● After each iteration of the loop we append to x the real part of the inverse fourier

transform of the function to store the value.

Page 17

MA201

7. Algorithms Implemented

A Python Code was written to solve the problem statement. The algorithm followed can be stated
in the following steps:

Writing a DFT function implementation in Python:

1. We receive a 1-D array as input for the DFT function. This 1-D array corresponds to the
discrete, complex signal that we want to apply the DFT to.

2. For each frequency term, we apply the formula:

3. For each frequency we choose, we must multiply each signal value by a complex number
and add together the results.

Code:
def DFT(f):

N = len(f)
we are creating a empty array of 0s of size N
F = np.zeros(N).astype(np.complex64)

creating indices for x, allowing to compute the multiplication using
numpy (f*exp)

x = np.arange(N)

for each frequency 'u', perform vectorial multiplication and sum

doing 4N - 2 operations N times → O(complexity𝑛2)
for freq in np.arange(N):

F[freq] = np.sum(f*np.exp((-1j*2*np.pi*freq*x)/N))

return dft_F

Page 18

MA201

Time complexity analysis:
For each real-complex multiplication, we need to compute two real multiplications, thus needing 2𝑁
multiplications. Total number of operations = (for multiplication) + (for addition of2𝑁 2(𝑁 − 1)
N-1 terms) = . To perform this for all of the N frequencies, total number of computations4𝑁 − 2

reach thus making it a algorithm.𝑁(4𝑁 − 2) 𝑁2

Writing a FFT function implementation in Python:

The Fast Fourier Transform (FFT) is a divide and conquer algorithm that recursively splits the
input array in two parts; one for the odd indices while another for the even indices, until the
trivial case is achieved. The trivial case is it returns the integer back.

It is important to note that complex exponentials (that can be decomposed into a sum of sine and
cosine by Euler’s equation) are periodic and symmetric, and from those properties the FFT is
defined.

In particular, from , we isolate the constant term, and define it as a variable: W =𝑒
−𝑗 2π

𝑁 𝑥𝑢
𝑒

−𝑗 2π
𝑁

.

Note W is constant because it does not depend on the time sampling (controlled by x), nor

depends on the frequencies (u). =𝑊
𝑁
𝑢𝑥 𝑒

−𝑗 2π
𝑁 𝑥𝑢

For example, for a signal with 4 observations, i.e., N = 4: W = (6.123233995736766e-17-1j).

This value does not depend on u nor x. The two properties we are going to use to implement the
FFT are:

1. Periodicity in u,x: .𝑊
𝑁
𝑢𝑥 = 𝑊

𝑁
𝑢(𝑁+𝑥) = 𝑊

𝑁
(𝑢+𝑁)𝑥

2. Symmetry of the complex conjugates: for example this is𝑊
𝑁
𝑢(𝑁−𝑥) = 𝑊

𝑁
−𝑢𝑥 = (𝑊

𝑁
𝑢𝑥)

*

easy to see for x=N, 𝑊
𝑁
𝑢𝑁 = 𝑒−𝑗2Π𝑢 = 1.

Page 19

MA201

Now we define the division step of the algorithm. This is done by decomposing the transform
into even and odd indices of x. To avoid a cluttered notation, let us express the transform in
terms of the variable W :

𝐹(𝑢) = Σ
𝑥=0
𝑁−1𝑓(𝑥)𝑊

𝑁
𝑢𝑥

Now we write the function of evaluating the even indices 2x and the odd indices 2x+1:

𝐹(𝑢) = Σ
𝑥=0
𝑁/2−1𝑓(2𝑥)𝑊

𝑁
𝑢(2𝑥) + Σ

𝑥=0
𝑁/2−1𝑓(2𝑥 + 1)𝑊

𝑁
𝑢(2𝑥+1)

Note 2x forms the sequence 0, 2, 4, 6, while 2x+1 the sequence 1, 3, 5, 7 as we wanted,
therefore:

𝐹(𝑢) = Σ
𝑥=0
𝑁/2−1𝑓(2𝑥)(𝑊

𝑁
2)

𝑢𝑥
+ Σ

𝑥=0
𝑁/2−1𝑓(2𝑥 + 1)(𝑊

𝑁
2)

(𝑥+ 1
2)𝑢

Let us manipulate this sum, isolating the terms that are independent of x, which is the :𝑊
𝑁
𝑢

𝐹(𝑢) = Σ
𝑥=0
𝑁/2−1𝑓(2𝑥)(𝑊

𝑁
2)

𝑢𝑥
+ 𝑊

𝑁
𝑢 Σ

𝑥=0

𝑁/2−1
𝑓(2𝑥 + 1)(𝑊

𝑁
2)

𝑢𝑥

But we know that 𝑊
𝑁
2 = 𝑒

−𝑗 2Π
𝑁 2

= 𝑒
−𝑗 2Π

𝑁/2 = 𝑊
𝑁/2

and this defines the 'trick', since it allows to write the transform as:

𝐹(𝑢) = Σ
𝑥=0
𝑁/2−1𝑓(2𝑥)𝑊

𝑁/2
𝑢𝑥 + 𝑊

𝑁
𝑢 Σ

𝑥=0

𝑁/2−1
𝑓(2𝑥 + 1)𝑊

𝑁/2
𝑢𝑥

Page 20

MA201

The first term is the DFT of the N/2 elements corresponding to the even indices, the second term
is the DFT of the N/2 elements related to the odd indices.

This way, we can split the DFT of N elements, in a recursive way, into two N/2 DFTs, and later
combine the results:

𝐹(𝑢) = 𝐹
𝑒𝑣𝑒𝑛

(𝑢) + 𝑊
𝑁
𝑢 . 𝐹

𝑜𝑑𝑑
(𝑢)

Recall the property of symmetry of the complex conjugate:

𝐹(𝑢 + 𝑁/2) = 𝐹
𝑒𝑣𝑒𝑛

(𝑢) − 𝑊
𝑁
𝑢 . 𝐹

𝑜𝑑𝑑
(𝑢)

In this simple example, we partition the elements until we reach the base case, that is when there
is only 1 even and 1 odd element, allowing us to compute.

Now this result is stored and we execute the other 'side' of the recursion, relative to the first odd
indices

Now, combining the individual results (recurseeven and recurseodd):

recurseodd0 = f_odd_even[0] + exp(-2j*pi*0/N) * f_odd_odd[0]

recurseodd1 = f_odd_even[0] - exp(-2j*pi*0/N) * f_odd_odd[0]

recurseodd = [recurseodd0, recurseodd1]

recurseeven0 = f_even_even[0] + exp(-2j*pi*0/N) * f_even_odd[0]

recurseeven1 = f_even_even[0] - exp(-2j*pi*0/N) * f_even_odd[0]

recurseeven = [recurseeven0, recurseeven1]

Page 21

MA201
Let us code a function for this algorithm

def FFT(f):

N = len(f)

if (N == 0 or N == 1):

return f

taking the elements at odd and even position separately

evenarr=FFT(f[0::2])

oddarr=FFT(f[1::2])

stores the final array containing the array after FFT is used

ans = np.zeros(N).astype(np.complex64)

only required to compute for half the frequencies

since u+N/2 can be obtained from the symmetry property

for u in range(N//2):

ans[u]=evenarr[u]+exp(-2j*pi*u/N)*oddarr[u] # conquer

ans[u+N//2]=evenarr[u]-exp(-2j*pi*u/N)*oddarr[u] # conquer

return ans

Time complexity analysis:

The time complexity of FFT is . This improves upon the DFT’s running time of𝑁 * 𝑙𝑜𝑔(𝑁) 𝑁2.

Page 22

MA201

8. Results and Discussion

Figure 1: Amplitude Vs Time

Figure 2: Amplitude Vs Time

Figure 3: Amplitude & Frequency Plot

Page 23

MA201

Figure 3: Fourier Transform of Input Image in GrayScale

Figure 4: After Applying HPF to FFT Transformed Image

Figure 5: Resultant of HPF - Edge Detection

Page 24

MA201

Results

• Here as we can see, a high pass filter sharpens(or shows the edge of) an image. It
attenuates the low frequencies and leaves the high frequencies of the Fourier
Transform relatively unchanged.

• A Fast fourier transform is preferred over the Discrete Fourier Transform method
because it’s computational method for the DFT needs only O(N)log2N operations
instead of O(N 2) . It makes the DFT a practical tool for large N.

• F(0,0) is equal to MN times the average value of f(x,y).

• The fourier spectrum is symmetric about the origin.

• Adding zero padding to the image helps to create a finer sampling of the fourier
transform faster computation of FFT.

• The zero frequency components are displayed in the top left and therefore need to
be shifted in the center using the fftshift function.

• In the Fourier transform, the high peaks are so high that they hide the details. We
reduce the contrast with the log function.

• Fourier transform leads to complex parts. Both the magnitude and the phase
functions are necessary for the complete restoration of an image from its Fourier
transform.

• Multiplication of two Fourier transforms corresponds to convolution of the
associated functions in spatial domains. Therefore simple multiplication of spatial
filter and frequency domain speeds up the filtering process.

Page 25

MA201

9. Future Scope
● Optimization of data for continuous feed into the program to further decrease the

time required is what one can work upon. It shall require a parallel flow of data
and detection.

● Automation of various processes requires excellent surveillance and observational
abilities. Since machine technology mandates automation, image processes are of
extreme use here. However, here, we need a combination of smooth as well as
sharp images, which a blend of these filters shall achieve.

● The edge detection technology can be used to detect edges in fingerprints which
can enhance the rate of detection of fingerprints as it would take less memory than
a photo of a fingerprint.

● It is challenging to analyze the boundaries of an image viewed through a satellite
as the color difference between two territories is not much. Thus, edge detection
can help us identify territories quickly through satellite images as it produces
sharper images.

● Edge detection is critical when doing some serious image processing, such as that
for medical reasons. These require high precision and hence sharper features.
Therefore, such processes can use high pass filters.

Page 26

MA201

10. Code for Edge Detection
11.1 Fourier Transform of images using OpenCV

#Importing numpy,cv2 & matplotlib

import cv2 as cv

import numpy as np

from matplotlib import pyplot as plt

Reading image in grayscale

img = cv.imread('lal_minar.jpg',0)

#Frequency transform is a complex array

f = np.fft.fft2(img)

#Shifting the zero frequency component to the center

fshift = np.fft.fftshift(f)

#Finding the magnitude spectrum

A1 = 20;

magnitude_spectrum = A1*np.log(np.abs(fshift))

#Plotting

plt.subplot(121),plt.imshow(img, cmap = 'gray')

plt.title('Input Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')

plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])

plt.show()

Page 27

MA201

#Center

rows, cols = img.shape

crow,ccol = rows//2 , cols//2

HPF masking, center 12X12 grid masked 0, remaining all ones

mask = 12;

fshift[crow-mask:crow+mask, ccol-mask:ccol+mask] = 0

Finding the magnitude spectrum of masked Fourier Transform

A2 = 2000;

fshift_mask_mag = A2 * np.log(np.abs(fshift))

#Restoring the original indexing

f_ishift = np.fft.ifftshift(fshift)

#Inverse FFT

img_back = np.fft.ifft2(f_ishift)

#Finding the magnitude spectrum

img_back = np.real(img_back)

#Plotting

plt.subplot(131),plt.imshow(img, cmap = 'gray')

plt.title('Lal Minar'), plt.xticks([]), plt.yticks([])

plt.subplot(132),plt.imshow(fshift_mask_mag , cmap = 'gray')

plt.title('FFT + Mask'), plt.xticks([]), plt.yticks([])

plt.subplot(133),plt.imshow(img_back, cmap = 'Reds')

plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])

plt.show()

Page 28

MA201

11. References

[1] https://docs.opencv.org/3.4/de/dbc/tutorial_py_fourier_transform.html

[2] http://apps.usd.edu/coglab/schieber/psyc707/pdf/2D-FFT.pdf

[3] Kreyszig_Advanced Engineering Mathematics Book

[4] https://mathworld.wolfram.com/FastFourierTransform.html

Page 29

https://docs.opencv.org/3.4/de/dbc/tutorial_py_fourier_transform.html
http://apps.usd.edu/coglab/schieber/psyc707/pdf/2D-FFT.pdf
https://mathworld.wolfram.com/FastFourierTransform.html

MA201

12. Contribution

MA201 Maths project was a delightful experience for all of us as we learned to work together as
a team. Understanding about the Fourier series and its application was very interesting and
engaging as we were not aware of the extent of the application that Fourier series and its
transform plays in our life. It is due to this concept that image and signal processing is possible
today without which almost all electronics and digital media would not have been possible.

In the project, Anuj Buch handled and researched the Physical model, Governing Equations,
Further Scopes and documented the final draft. Haikoo Khandor took the responsibility of FFT
defining it in Parameters, explained it in detail in Important Concepts, coded and commented in
Algorithm Implementation. Ksheer Sagar Agrawal assessed in Solution Methodology, Results
and Discussion and implemented the Code for Edge Detection. Madhav Kanda explained IDFT in
Parameters, Important Concepts, coded it and did Future Scopes. Sanskar Sharma played a
crucial role in DFT in Parameters and Important Concepts and coded the DFT part in Algorithm
Implementation.

Page 30

