
 

CS499 Project Report 

DeblurGAN 

Guide: Prof. Shanmuganathan Raman 

Ph.D. Mentor: Prajwal Singh 

 Madhav Kanda Dhruv Patel Ksheer Sagar Agrawal 

 20110104 20110129 20110098 

DeblurGAN Report 
Introduction: 

As a part of the project course, we studied the paper "Deep Generative Filter for Motion 
Deblurring”, which proposed a Generative Adversarial Network (GAN) for deblurring motion 
images. The paper used Lua code, making it difficult to perform further experimentation. Hence, 
we implemented the entire GAN for deblurring in Pytorch. This report will explain our 
experiments, modifications, and results that we did on top of our Pytorch implementation. 



Implementation: 

The original code associated with the paper is in Lua, but we implemented the entire research paper 
in Pytorch to perform comprehensive experimentation. We faced several issues while 
implementing the research paper. This includes: 

1. The Go Pro dataset that we have used has sharp and blur images in different folders. Thus, 
we had to come up with an approach where both the blur and the real image could be fed 
together into the model. Thus, based on the implementation of Pix2Pix in Pytorch, we 
concatenated the two images and fed the model through the dataloader. 

2. Owing to the high number of filters, we weren’t able to fit the entire model on the GPU. 
Thus, we initially reduced the number of filters and reduced the batch size. Later on, we 
modified the codebase to use the two GPU cores parallely using DataParallel from the 
torch. Further, we reduced the usage of GPU by incorporating autocast which is a context 
manager that runs the code in mixed precision. 

We weren’t able to compare our implementation based on the metrics mentioned in the research 
paper as they used a combination of GoPro images and randomly sampled images from MS-COCO 
and Imagenet. Thus, recreating the exact dataset is not possible. Hence, for all our experiments we 
have used the GoPro dataset containing 2103 pairs of training images (blur and real) and 534 
pairs of test images (blur and real). 

These images were pre-processed to obtain images of the size 512*256 (width* height). Each such 
image was a concatenation of corresponding real (256*256) and fake (256*256) images. 
Link to our GitHub repository: https://github.com/ksheersagaragrawal/DeblurGAN 
Loss 

For the loss, we use the summation of three losses generative adversarial loss, L1 loss and 
LPIPS loss. 

https://www.youtube.com/watch?v=SuddDSqGRzg&list=PLhhyoLH6IjfwIp8bZnzX8QR30TRcHO8Va&index=7
https://github.com/ksheersagaragrawal/DeblurGAN


 

Experimentation and Methods Proposed: 

➔ Original 

● We trained the implemented GAN model on the training dataset and evaluated it on the test 
dataset to obtain the following results: 

PSNR SSIM MS - SSIM F - SIM VIF 

21.01 0.789 0.904 0.891 0.412 

➔ Experiment - 1 

● To normalize the outputs from each layer we were earlier applying batch normalisation, but 
since the batch size = 1 (owing to the computation resource constraints) it made no sense 
as there is no other image in the set to normalize over. Thus, we introduced Instance 
Normalisation which normalizes the image over the channels. 

● We replaced the VGG perceptual loss with LPIPS loss in the generator. LPIPS loss has 
shown to exhibit better results in many cases owing to its robustness to color and contrast, 
better correlation, etc. 

● The results that we obtained using this approach were significantly better than the previous 
results. Further, this significantly decreased the time to obtain the results. The results 
obtained using this experimentation were as follows: 

PSNR SSIM MS - SSIM F - SIM VIF 

23.47 0.8438 0.948 0.903 0.506 



➔ Experiment - 2 

● We explored the pytorch library for reducing the computation and for parallelization so as to 
increase the batch size. Based on it used the autocast and DataParallel method from the 
torch library. Autocast is a context manager that allows regions of code to run with mixed 
precision, this maintains accuracy while improving performance significantly. DataParallel 
method helped us to use the two GPU’s so as to get more computation power. 

➔ Experiment - 3 

● We used the WGAN loss for better training stability, gradient flow, and image quality. The 
results obtained using this are as follows: 

PSNR SSIM MS - SSIM F - SIM VIF 

22.022 0.819 0.9316 0.8972 0.536 

➔ Experiment - 4 
● We introduced differential augmentation to control the problem of vanishing gradients in 

discriminators while learning. This method feeds the model with images having different 
augmentations so that the learning keeps on happening for the discriminator. The results 
obtained are as follows: 

PSNR SSIM MS - SSIM F - SIM VIF 

23.51 0.8396 0.9470 0.900 0.503 

Conclusion: 
As can be seen, we have significantly improved the results by introducing many new methods in 
the initial model. Since we have been using a small dataset for training the GAN model and have 
been able to produce significant results, we wish to continue our research in this field and 
incorporate other methods to significantly boost our results. 

Methods PSNR SSIM MS - SSIM F - SIM VIF 

Original 21.01 0.789 0.904 0.891 0.412 

Experiment - 1 23.47 0.8438 0.948 0.903 0.506 

Experiment - 3 22.022 0.819 0.9316 0.8972 0.536 



Experiment - 4 23.51 0.8396 0.9470 0.900 0.503 

Loss Plots 

1. Differential augmentation 

 
2. LPIPS loss 

 

RESULTS 

LPIPS 



 
 Blur Sharp Generated 

Diffaug 

 
 Blur Sharp Generated 

Wgan 

 

 Blur Sharp Generated 

Future Work 



A comparison with similar works done using diffusion models would be helpful in 
providing context and insights into the performance of the model. This comparison could 
involve assessing the strengths and weaknesses of different diffusion models used in 
previous studies and how they compare with the current model. This would enable a better 
understanding of the limitations of the current model and potential areas for improvement. 
Regarding the current model's performance in a low data regime, further techniques could 
be explored to enhance the results. One approach could involve exploring transfer learning 
techniques that can leverage pre-trained models or knowledge from related tasks to 
improve the model's performance in low data regimes. 


