
What Happens To Uncertainty In Neural Networks Upon Pruning?

Ksheer Sagar Agrawal Lipika Rajpal Kanishk Singhal
IIT Gandhinagar IIT Gandhinagar IIT Gandhinagar

Abstract

Training large neural networks can be costly.
Sometimes large neural networks learn unneces-
sary features which leads to poor performance on
test data set. To tackle these issues, it is best
to remove the unwanted edges or the entire neu-
ron that is affecting the accuracy of the model.
Pruning the network is one such solution that im-
proves the accuracy, speed and uncertainty in the
model.

1 INTRODUCTION

Pruning is a technique aimed at reducing the size or com-
plexity of the model to improve its generalised performance
and prevent overfitting. Overfitting occurs when a model
becomes too complex and captures noise in the training
data, leading to poor performance on unseen data. Pruning
involves removing parts of the model that do not contribute
significantly to the predictions. A comprehensive study
of pruning methods on neural networks by Davis Blalock
[2] suggests that pruning imposes a trade off between effi-
ciency and accuracy. However it is also found that models
performs better in accuracy for small amounts of pruning.

Pruning can be classified as structured and unstructured
based on how the network’s connection or parameters are
removed. Structured pruning involves removing entire
neurons, channels or other structured group of parame-
ters from a neural network. This type of pruning main-
tains the original architecture of the network to some ex-
tent. Unstructured pruning, on the other hand, involves
removing individual weights or connections from the neu-
ral network without regard for the networks original struc-
ture. It doesn’t constrain the removal of parameters to
structured groups. Unstructured pruning can be more fine-
grained but may require more complex bookkeeping to
manage the pruned connections. Both structured and un-

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

structured pruning techniques have their advantages and
trade-offs. In this paper, we have experimented with a
structured pruning approach owing to its ease of implemen-
tation and hardware-friendliness.

2 Aleatoric Linear Regression

We have conducted experiments with linear regression
models that incorporate aleatoric uncertainty. In these
models, we focus on scenarios where the input consists of
a single feature, and the output is a single scalar value. The
output is determined by a linear relationship with the input,
but we also introduce some level of noise.

There are two main types of models we have explored: ho-
moskedastic and heteroskedastic. These models differ in
how they introduce noise into the true function that gener-
ates the output.

2.1 Aleatoric Homoskedastic Model

The aleatoric homoskedastic model considers data uncer-
tainty, which remains consistent and independent of the in-
put. In this model, for each input point, the output is a
linear function of the input value with the addition of Gaus-
sian noise. This noise is characterized by having a mean of
zero and a standard deviation denoted as σ. Importantly,
the standard deviation σ does not depend on the input val-
ues. Therefore, at each input point, the noise is drawn from
an identical Gaussian distribution with parameters N(0, σ).
This modeling approach allows us to account for consistent
and uniform uncertainty in the data throughout the entire
input space.

Y = XTΘ+N(0, σ)

2.2 Aleatoric Heteroskedastic Model:

The aleatoric heteroskedastic model incorporates varying
levels of noise into the data, and this noise is influenced
by the linear relationship with the input, offering a more
flexible approach to modeling uncertainty compared to the
homoskedastic model. The noise introduced into the true
function of the output is not a fixed standard deviation σ
but is instead a linear function of the input. At each point
of the input, the amount of noise added to the output is



What Happens To Uncertainty In Neural Networks Upon Pruning?

determined by the linear relationship with the input value.
This means that as the input values change, the level of
uncertainty in the data also varies proportionally.

Y = XTΘ+N(0, σ)

σ = m ∗X + c

where, m and c are learnable parameters.

2.3 Reliability Diagrams

Reliability diagrams depicts the calibration and confidence
of machine learning models. The x-axis represents pre-
dicted probabilities, while the y-axis shows the observed
frequencies of actual outcomes. Ideally, points should
align with the diagonal line (y = x), indicating perfect cal-
ibration. Deviations from this line reveal overconfidence
(points above) or underconfidence (points below) in model
predictions. Reliability diagrams help gauge the accuracy
of a model’s confidence estimates and identify areas for po-
tential calibration improvements [3].

1. X-Axis (Confidence Range): The X-axis of the plot
represents the range of predicted confidences, typi-
cally ranging from 0 to 1. This axis serves as a visual
reference for the confidence thresholds.

2. Y-Axis (Expected Accuracy): The Y-axis represents
the expected accuracy for each bin. This is the ratio
of accurate samples (correctly predicted) in a particu-
lar confidence range. Each point on the Y-axis corre-
sponds to a specific bin.

3. Ideal Calibration Line (Y = X): On the plot, we draw
a diagonal line with the equation Y = X. A perfectly
calibrated model would follow this line, where the av-
erage confidence of each bin matches the expected ac-
curacy for that bin. Deviations from this line indicate
calibration issues.

4. Underconfident Bins: When the plot is below the Y =
X line, it means that the model is underconfident. It’s
assigning lower probabilities to certain outcomes than
they deserve based on their actual accuracy. These
bins indicate areas where the model lacks confidence
despite being correct more often.

5. Overconfident Bins: If the plot is below the Y = X
line, the model is underconfident. It’s assigning higher
probabilities to certain outcomes than warranted by
their actual accuracy. These bins represent areas
where the model is too sure of itself but is often in-
correct.

Figure 1: Reliability diagram for Heteroskedastic Regres-
sion

Figure 2: Reliability diagram for Homoskedastic Regres-
sion

3 OVERVIEW OF STRUCTURED
PRUNING

Standard pruning techniques involves training a network
and pruning smallest magnitude weights. The remain-
ing unpruned network when re-initialized such that when
trained in isolation matches the accuracy of the original net-
work for similar number of iterations. These sub networks
obtained via pruning are called winning tickets. The struc-
ture of the winning tickets alone does not guarantee suc-
cess until properly re-initialised as regarded in the Lottery
Ticket Hypothesis [1]. We aim to find these winning tickets
to improve training performance and investigate Bayesian
inferences.

3.1 Algorithms

Many papers employ various pruning strategies, often de-
rived from Algorithm 1 (Han et al., 2015). These pruning
strategies vary in their choices of sparsity structure, scor-
ing, scheduling, and fine-tuning. In this paper, we will fo-
cus on pruning parameters in groups (structured pruning)
and use L1-norm-based scoring.



Ksheer Sagar Agrawal, Lipika Rajpal, Kanishk Singhal

ALGORITHM 1 Pruning

Input: X , the dataset on which to train the model
Pm, ratio of nodes to be pruned in each layer
N , the number of layers in Neural Network

1: W← initialise()
2: W← train To Convergence(f(X; W))
3: for i in 1 to N-1 do
4: pruned layers← prune Pm features from ith layer
5: (i+1)th layer← remove out edges from pruned layer
6: end for
7: return pruned model

Consider a large Multi-Layer Perceptron of size N. We ini-
tialize the model with certain weights and train it for a
specified number of epochs. To initiate the pruning pro-
cess, we rely on specific information, including the prun-
ing ratio, Pm, which determines the proportion of features
to be pruned in each layer. A for loop is employed to iterate
through the model’s layers, ranging from 0 to N-1. Prun-
ing within the ith layer is rooted in the L1 norm, where
the feature’s score is determined by the sum of the abso-
lute values of input weights for each feature. A fraction
of Pm features with the lowest scores is subsequently re-
moved from the layer and designated as pruned layers. As
a subsequent step, the outgoing edges of the pruned layers
within the (i+1)th layer are eliminated. The activation lay-
ers interspersed in between are excluded from the pruning
process, and the final being vital for the classification pro-
cess, remains untouched as well. In the end, the resulting
pruned model is returned initialized with random values.

3.1.1 Early Stopping Criteria

We are interested in measuring the speed at which networks
learn. As a proxy for this quantity, we measure the itera-
tion at which an early-stopping criterion would end train-
ing. The specific criterion we employ is the iteration of
minimum validation loss with a patience of 3. Our findings
co-match the lottery ticket hypothesis, as we find sub net-
works networks that learn at least as fast as their counter
larger parts and achieves comparable accuracy.

3.1.2 One-Shot Pruning

One-shot pruning does indeed find winning tickets at 0.5
pruning ratio with comparable accuracy to the unpruned
network. Since one-shot pruning does not require repeti-
tive training, it is relatively cheaper compared to iterative
pruning. The gap between the blue and red curves shows
clearly that one-shot pruning performs poorly for a large
pruning ratio.

Figure 3: MakeMoons Dataset

3.1.3 Re-Initialised One-Shot Pruning

To measure the importance of the Re-initialization of a win-
ning ticket, we retain the structure of pruned model. How-
ever, tweaking the algorithm by initializing it with the pre-
training values. We find that with proper re initialisation,
pruned models learn faster with similar test accuracy.These
results support the lottery ticket hypothesis emphasis on re
initialisation. [1].

3.1.4 Randomly Re-Initialised One-Shot Pruning

In order to better understand the lottery ticket hypothesis,
which suggests re-initializing the weights to pre-training
weights, we also implemented the technique of assigning
random weights after pruning to measure the effects of re-
initializing on pruning of models. The broader results of
this experiments are the average random reinitialised win-
ning tickets test accuracy drops off significantly compared
to model initialised with pre-training values.

3.2 Iterative Pruning

There are two different ways of structuring the iterative
pruning strategy - pruning with resetting and pruning with
continued training. We employed the former technique, as
the name suggest we recursively train the model with early
stopping followed by pruning. This results in a trade off
between computation power and test accuracy. Iterative
pruning extracts smaller winning tickets and reach higher
test accuracy for smaller network size. The red line in fig-
ure 3 and figure 4 depicts , that the test accuracy is retained
above the base accuracy even when Pm ≥ 80%.

In Figure 5, the Accuracy of a simple MLP model is ob-
served over the make moons dataset. Different kind of
pruning techniques for low pruning ratio holds their ac-



What Happens To Uncertainty In Neural Networks Upon Pruning?

Figure 4: Early-Stop Iteration (Val.) vs. Pruning Ratio for
MakeMoons Dataset

curacy as the problem is simple. But as we increase the
pruning there is a clear drop in accuracy of Oneshot Ran-
dom Reinit pruning. This is also intuitive as in Oneshot
random Re-init the model is randomly initialized and be-
haves as good as taking a new smaller model, which will
perform poorly compared to a larger model. An important
note here is that different pruning techniques retain accu-
racy better than Oneshot random reinit, which shows the
promising aspects of pruning a model, which can make a
model smaller while retaining the accuracy.

4 PRUNING MODELS

We now discuss the step-by-step implementation of pro-
cesses before the actual pruning of neural networks.

4.1 Define Model

As we wanted to see the effects of pruning, we described a
very large Multi-Layer Perceptron (MLP), with many lay-
ers and neurons. Taking a large MLP is better for the fol-
lowing reasons:

4.1.1 Layer-Specific Analysis

A large MLP allows us to perform a layer-specific analysis
of the pruning effects. Different layers in a neural network
often capture different levels of abstraction and complexity
in the data. By using a large MLP, we can investigate how
pruning influences each layer individually. This provides
insights into whether certain layers are more resilient to

Figure 5: Accuracy vs. Pruning Ratio for MakeMoons
Dataset

pruning or whether specific layers contribute significantly
to the network’s overall accuracy.

4.1.2 Pruning Technique Variability

A diverse set of pruning techniques can be applied to dif-
ferent layers of the large MLP. Each pruning method may
exhibit varying effects on different layers, which could re-
veal the strengths and weaknesses of each technique. For
example, one-shot pruning with reinitialized weights, one-
shot pruning with post-training weights, and iterative prun-
ing may have different impacts on early, middle, and late
layers of the network.

4.1.3 Realistic Pruning Scenarios

In practical applications, deep neural networks are often de-
ployed with a substantial number of parameters. By using
a large MLP, our study aims to emulate realistic pruning
scenarios where significant model compression is needed
while maintaining acceptable accuracy. This aligns our re-
search with the challenges faced by practitioners in deploy-
ing deep learning models in resource-constrained environ-
ments.

4.2 Defining Metrics

In the context of evaluating and comparing the effective-
ness of neural network pruning techniques, we have se-
lected accuracy as the primary metric. The choice of
this metric is grounded in its fundamental significance in
assessing the overall performance of a machine-learning



Ksheer Sagar Agrawal, Lipika Rajpal, Kanishk Singhal

model. We have chosen this metric because of its overall
simplicity and intuitiveness. Also, this allows us to perform
comparisons across models and techniques.

4.2.1 Expected Calibration Error

In the context of machine learning and predictive modeling,
ensuring not only accurate but also well-calibrated predic-
tions is crucial. The Expected Calibration Error (ECE) is a
widely used metric designed to quantify the degree of cal-
ibration in machine learning models, particularly in classi-
fication tasks. It provides valuable insights into how well
a model’s predicted probabilities align with the true proba-
bilities of outcomes.

Regression For regression tasks, calibration can be cal-
culated as the measure of percentage of data points falling
in a confidence interval against the supposed number of
data points which should lie in the interval. To calculate
the calibration error we assume a normal distribution with
mean as the prediction and standard deviation can be learnt
with the model.

1. Bin Creation: The first step is to find the confidence
interval in terms of standard deviation in which the
given percentage of data points should ideally lie. We
use the ‘ppf’ function from ‘scipy.stats’ to calculate
the above.

2. Bin Assignment: Assign the percentage of data points
which actually lie in the confidence interval. We can
plot this data for different confidence intervals which
gives us the reliability diagram for regression models.

Classification Calibration, in the context of a classifica-
tion model, assesses the agreement between the model’s
predicted probabilities (confidences) and the actual out-
comes. This process ensures that the predicted probabilities
represent accurate measures of the likelihood of an event
occurring. The function takes as input the true labels, pre-
dicted labels, and confidences, along with the number of
bins to divide the predicted confidences into. The proce-
dure is as follows

1. Bin Creation: The function divides the range of pre-
dicted confidences (usually between 0 and 1) into a
specified number of equally sized bins(we can also
do a non-uniform division of the confidence range in
some cases). This step creates thresholds for confi-
dence levels.

2. Bin Assignment: Each prediction in the dataset is as-
signed to one of the bins based on its confidence level.
The function digitizes the confidence values and de-
termines which bin each prediction falls into.

The function then computes the average accuracy and aver-
age confidence over the entire dataset. It also calculates the
Expected Calibration Error (ECE), which is a weighted av-
erage of the calibration gaps for each bin. The calibration
gap for a bin is the absolute difference between the bin’s
accuracy and the average confidence in that bin.

A well-calibrated model should have predicted probabili-
ties that closely match the actual outcomes, resulting in a
low ECE. By analyzing these metrics, we can gain insights
into the reliability of your model’s confidence scores and
potentially make adjustments to improve its performance.

5 Results and Analysis

After identifying winning tickets in a fully-connected ar-
chitecture for make moons dataset, we analyse pruning on
convolutional architectures for CIFAR10 dataset. We have
plotted their accuracies and ECE against the pruning ra-
tios for iterative pruning strategy. This has given various
insights into the trade-offs of pruning neural networks.

5.1 Accuracy

As the pruning ratio increases, the initial impact on model
accuracy is generally predictable: accuracy decreases. This
is because pruning indiscriminately removes connections,
leading to a loss of information and potentially critical fea-
tures. Higher pruning ratios result in more aggressive com-
pression but also a more significant accuracy drop.

Figure 6: Early-Stop Iteration (Val.) vs. Pruning Ratio for
Cifar10 Dataset

In this experiment, we have aimed at attaining the “winning
ticket” for iterative pruning on the cipher-10 dataset. The



What Happens To Uncertainty In Neural Networks Upon Pruning?

Figure 7: Test Accuracy vs Pruning Ratios for iterative
pruning on CIFAR10

pruning technique applied is iterative pruning with reini-
tializing the weights of the pruned model with that of the
corresponding nodes in the initial unpruned model. Fur-
thermore, we have re-trained the model on the training
dataset until we achieve the minimum validation loss. As
it can be observed from the figures, we have attained the
winning ticket at a pruning ratio of 0.6. At this point, the
model was able to retain the actual accuracy on the test
dataset, consuming a minimum number of training epochs.

5.2 Expected Calibration Error

To evaluate the performance of a deep learning model, ac-
curacy is often insufficient, as not only the decision but the
confidence of a model’s decision also has to be evaluated.
Reliability diagrams are usually employed to measure the
deviation between the model’s confidence and measured
accuracy. The identity function would represent a perfect
calibration (shown as a dashed line in the ECE figures be-
low). Any deviation from this identity function means a
miscalibration of the model, and the model is considered
accordingly either overconfident or underconfident.

1. From Figure 8 & 9 , it can be seen that pruning has a
positive effect on the calibration of a network. Often,
at meager compression rates, accuracy even increases,
giving an additional advantage through pruning. At
higher compression rates, there is a trade-off between
accuracy and calibration that must be considered indi-
vidually.

2. Compared to the baseline, the accuracy of the 80%

Figure 8: ECE vs Pruning Ratios for Make Moons Dataset

Figure 9: ECE vs Pruning Ratios for CIFAR 10 Dataset

pruned model is reduced only by 2%. However, the
ECE has improved by 5% from the baseline. Further
pruning as seen in Figure 3.2, yields a drop in accu-
racy but improves model calibration. It thus improves
the model’s awareness of its low accuracy.

5.3 Out of Distribution (OOD) Detection

For a better understanding of calibration and the value of
ECE, we performed an Out-of-Distribution (OOD) Detec-
tion on CIFAR 100 dataset. OOD is the task of identifying
instances that do not belong to the distribution on which
the classifier has been trained. Compared to the baseline,
pruned models are considerably better in calibration, even
without using a pruning method specifically designed for
this purpose. This is an unambiguous indication that prun-
ing can impact and improve a network’s decision and there-
fore making it safer and more robust.



Ksheer Sagar Agrawal, Lipika Rajpal, Kanishk Singhal

Figure 10:

5.4 Pruning Best Practices

Most Pruning Research papers perform analysis on very
few combination of data sets and model architecture.
Moreover, due to very few pruning libraries and absence
of evaluation metrics , it becomes difficult to reproduce re-
sults. State of Neural Network[1] has compiled results of
all pruning based research papers, observing which we ad-
hered to some of its good practices.

1. Reported and plotted means and sample standard de-
viations, instead of one-off measurements, whenever
feasible.

2. Used modern large scale datasets like CIFAR 10, in-
stead of toy data sets like MNIST.

3. Identified the exact sets of architectures, datasets, and
metrics from pytorch library, ideally in a structured
way that is not scattered throughout the results section.

4. For any given pruned model, reported both compres-
sion ratio and theoretical speedup.

6 Conclusion

Our results show that pruning may considerably improve
the model’s calibration without being specifically designed
for this purpose. A well calibrated model excels at estimat-
ing the reliability of its own decisions. Pruning may thus

have a positive effect on reliability and robustness. This re-
sult complements literature reports pointing out a positive
contribution of the pruning to adversarial robustness.

For future work we have planned,

1. Better analysis on (dataset, architecture) combinations
while following best practices of pruning.

2. Introduce model uncertainty with MC Dropout and
Laplace.

References

Jonathan Frankle, Michael Carbin. The Lottery Ticket Hy-
pothesis: Finding Sparse, Trainable Neural Networks.
https://arxiv.org/pdf/1803.03635.pdf

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Fran-
kle, John Guttag. What is the state of Neural Network
Pruning? https://arxiv.org/pdf/2003.
03033.pdf

Vibhuti Bansal, Rohit Khoiwal, Hetvi Shastri, Haikoo
Khandor, Nipun Batra. “I do not know”: Quan-
tifying Uncertainty in Neural Network Based
Approaches for Non-Intrusive Load Monitoring
https://nipunbatra.github.io/papers/
2022/buildsys22-nilm.pdf

https://arxiv.org/pdf/1803.03635.pdf
https://arxiv.org/pdf/2003.03033.pdf
https://arxiv.org/pdf/2003.03033.pdf
https://nipunbatra.github.io/papers/2022/buildsys22-nilm.pdf
https://nipunbatra.github.io/papers/2022/buildsys22-nilm.pdf


What Happens To Uncertainty In Neural Networks Upon Pruning?

A Visualization of Neural Network

We have used the python library ‘networkx’ to visualize the process of structured pruning on a neural network. The aim
of this activity is to verify the accuracy of the structured pruning algorithm defined above. So, we begin by creating a fully
connected neural network and assigning weights to each of the input edges in each layer manually. Visualization Blog

Figure 11: Network before Pruning Figure 12: Network after Pruning

B Github Link

We are including the Github link of our repository with this paper.

https://kanishk-py.github.io/blogs/posts/pruning-visualization/
https://github.com/ksheersagaragrawal/LotteryTicketPruning

	INTRODUCTION
	Aleatoric Linear Regression
	Aleatoric Homoskedastic Model
	Aleatoric Heteroskedastic Model:
	Reliability Diagrams

	OVERVIEW OF STRUCTURED PRUNING
	Algorithms
	Early Stopping Criteria
	One-Shot Pruning
	Re-Initialised One-Shot Pruning
	Randomly Re-Initialised One-Shot Pruning

	Iterative Pruning

	PRUNING MODELS
	Define Model
	Layer-Specific Analysis
	Pruning Technique Variability
	Realistic Pruning Scenarios

	Defining Metrics
	Expected Calibration Error


	Results and Analysis
	Accuracy
	Expected Calibration Error
	Out of Distribution (OOD) Detection
	Pruning Best Practices

	Conclusion
	Visualization of Neural Network
	Github Link

